| Table 1 | . Final | coordinate.     | s and  | equival | ent isot | ropic |
|---------|---------|-----------------|--------|---------|----------|-------|
| thermal | parame  | ters of the     | non-h  | ydrogen | atoms,   | with  |
|         | th      | eir e.s.d.'s ii | n pare | ntheses |          |       |

| U,         | $q = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_{ij}^* $ | $l_j^*\mathbf{a}_i.\mathbf{a}_j.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x          | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $U_{eq}(\text{\AA}^2)$                                                                                                                                        |
| 0.7164 (2) | 0.3773 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2739 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0541 (5                                                                                                                                                     |
| 1.2833 (3) | 0.3373 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2305 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0500 (5                                                                                                                                                     |
| 0.8405 (3) | 0.4503 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2346 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0409 (6                                                                                                                                                     |
| 1.0305 (3) | 0.5227 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2706 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0441 (6                                                                                                                                                     |
| 1.2266 (3) | 0.4915 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2201(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0459 (6                                                                                                                                                     |
| 1.1918 (3) | 0.5257 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1332(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0476 (7                                                                                                                                                     |
| 1.0068 (3) | 0.4374 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0994 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0440 (6                                                                                                                                                     |
| 0.8092 (3) | 0.4751 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1469 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0491 (7                                                                                                                                                     |
| 1.0584 (4) | 0.4868 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3572 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0633 (9                                                                                                                                                     |
| 0.9704 (3) | 0.4613 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0118 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0521 (7                                                                                                                                                     |
| 0.9531 (5) | 0.3431 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0370 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.067 (1)                                                                                                                                                     |
| 0.9535 (6) | 0.6159 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0173 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.078 (1)                                                                                                                                                     |
|            | <i>X</i><br>0.7164 (2)<br>1.2833 (3)<br>0.8405 (3)<br>1.0305 (3)<br>1.2266 (3)<br>1.1918 (3)<br>1.0068 (3)<br>0.8092 (3)<br>1.0584 (4)<br>0.9704 (3)<br>0.9531 (5)<br>0.9535 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* d_i^* d_i^* d_i^* d_i^* d_j^* d_i^* d_i^$ | $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |



Fig. 1. View of the molecule with atom numbering.

assembled in Table 2. The cyclohexanone ring exhibits a chair conformation (Boeyens, 1978) with puckering parameters Q = 0.543 (2) Å,  $\theta = 7.9$  (2) and  $\varphi = 205$  (2)° (Cremer & Pople, 1975). The methyl group assumes an equatorial position, making an angle of 71.1 (2)° with the normal to the Cremer & Pople plane. The molecules are linked *via* a hydrogen bond [O(2)—H(1)…O(1), with O(2)… O(1) = 2.892 (2), O(2)—H(1) = 0.74 (3), H(1)…O(1)

Table 2. Bond lengths (Å) and bond angles (°)

| O(1) - C(1)<br>O(2) - C(3)<br>C(1) - C(2)<br>C(1) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1·224 (3)<br>1·438 (2)<br>1·507 (3)<br>1·508 (3)                                          | C(3)—C(4)<br>C(4)—C(5)<br>C(5)—C(6)<br>C(5)—C(8)                                                                      | 1.514 (3)<br>1.535 (3)<br>1.536 (3)<br>1.512 (3) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| C(2)—C(3)<br>C(2)—C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1·543 (3)<br>1·506 (4)                                                                    | C(8)—C(9)<br>C(8)—C(10)                                                                                               | 1·345 (4)<br>1·472 (4)                           |
| $\begin{array}{c} O(1) - C(1) - C(2) \\ O(1) - C(1) - C(6) \\ C(2) - C(1) - C(6) \\ C(1) - C(2) - C(3) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122·4 (2)<br>121·5 (2)<br>116·0 (2)<br>111·0 (2)                                          | C(3) - C(4) - C(5) $C(4) - C(5) - C(6)$ $C(4) - C(5) - C(8)$ $C(6) - C(5) - C(8)$                                     | 111.7 (2) 109.3 (2) 114.2 (2) 110.6 (2)          |
| $\begin{array}{c} C(1) - C(2) - C(7) \\ C(3) - C(2) - C(7) \\ O(2) - C(3) - C(2) \\ O(2) - C(3) - C(4) \\ O(2) - C(3) - C(4) \\ O(2) - C(3) - C(4) \\ O(3) - O(4) \\ O(3) - O($ | $113 \cdot 2 (2)$ $113 \cdot 5 (2)$ $108 \cdot 2 (2)$ $110 \cdot 4 (2)$ $112 \cdot 2 (2)$ | $\begin{array}{c} C(1) - C(6) - C(5) \\ C(5) - C(8) - C(9) \\ C(5) - C(8) - C(10) \\ C(9) - C(8) - C(10) \end{array}$ | 111.7 (2)<br>120.0 (3)<br>118.0 (2)<br>122.0 (2) |
| C(2) - C(3) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.2 (2)                                                                                 |                                                                                                                       |                                                  |

= 2.200 (3) Å and O(2)—H(1)···O(1) = 156 (3)°] into an infinite chain running in the *a*-axis direction.

The investigations were supported in part (ALS) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Advancement of Pure Research (ZWO).

#### References

- BOER, J. L. DE & DUISENBERG, A. J. M. (1984). Acta Cryst. A40, C410.
- BOEYENS, J. A. C. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- CREMER, D. & POPLE, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- McCandlish, L. E., Stout, G. H. & Andrews, L. C. (1975). Acta Cryst. A31, 245-249.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.
- SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYRE, p. 528. Oxford: Clarendon Press.

Acta Cryst. (1990). C46, 631-634

# Structure of $\alpha$ -D-Mannosido-naphtho-18-crown-6:\* A Potent Host for Chiral Recognition

# By Kinga Suwińska

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01 224 Warsaw, Poland

(Received 4 May 1989; accepted 26 July 1989)

Abstract. (Methyl 2,3-dideoxy-4,6-O-isopropylidenemannopyranosido)-naphtho-18-crown-6, C<sub>28</sub>H<sub>38</sub>O<sub>10</sub>,

\* IUPAC name: methyl 4,6-O-isopropylidene-2,3-O-{2,3-naph-thylenebis(oxyethyleneoxyethylene)}mannopyranoside.

0108-2701/90/040631-04\$03.00

 $M_r = 534.6$ , monoclinic  $P2_1$ , a = 11.606 (2), b = 8.126 (4), c = 14.977 (2) Å,  $\beta = 102.38$  (2)°, V = 1379 (2) Å<sup>3</sup>, Z = 2,  $D_x = 1.287$  g cm<sup>-3</sup>,  $\lambda$ (Mo  $K\alpha$ ) = 0.71073 Å,  $\mu = 0.909$  cm<sup>-1</sup>, F(000) = 572, T = 298 K, final R = 0.035 for 2108 reflections. In its

© 1990 International Union of Crystallography

uncomplexed form the 18-crown-6 macrocyclic ring of the ligand has a highly distorted conformation stabilized by three short C-H-O intramolecular contacts 'across' the internal cavity.

Introduction. Chiral crown polyethers are potent host molecules for selective recognition of enantiomers such as amino acids and their derivatives (Géhin, Di Cesare & Gross, 1986). Crystal structures of chirally substituted 18-crown-6 where the chiral substituent is a sugar derivative have been reported up to now only for complexed ligands such as  $\alpha$ -D-glucosido-benzo-18-crown-6 (I) with: KI (Suwińska, Pietraszkiewicz, Lipkowski, Jurczak, Andreetti & Bocelli, 1981), KSCN (Suwińska & Andreetti, 1983), (R)-phenylglycine methyl ester hexafluorophsphate (Courtois, El Masdouri, Géhin & Gross, 1986) and  $\alpha$ -Dmannosido-benzo-18-crown-6 (II) with KSCN (Suwińska & Lipkowski, 1988). For the first time the structure of the 'free' ligand  $\alpha$ -D-mannosidonaphtho-18-crown-6 (III) is presented, thus allowing for comparison between the complexed and uncomplexed forms of the ligand.



Experimental. Crystal approximate dimensions 0.35  $\times 0.35 \times 0.52$  mm; intensities measured at 298 K on Enraf-Nonius CAD-4 four-circle diffractometer (Mo  $K\alpha$  radiation, graphite monochromator). Lattice parameters determined by least squares from 23 reflections (5 <  $\theta$  < 11°). Total of 2893 reflections up to  $\theta = 25^{\circ}$  ( $0 \le h \le 13$ ,  $0 \le k \le 9$ ,  $-17 \le l \le 17$ ) measured in the  $\omega$ -2 $\theta$  scan mode; 2610 unique reflections ( $R_{int} = 0.011$ ), 2108 reflections considered as observed  $[F_o > 2\sigma(F_o)]$ . The intensity variation of three standard reflections, measured every hour, was less than 1%. No absorption or secondary-extinction correction. Structure solved by MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) and refined by full-matrix least squares with the SDP system (B.A. Frenz & Associ-

| Table 1.  | Fractional atomic coordinates $(\times 10^4)$ and    |
|-----------|------------------------------------------------------|
| isotropic | thermal parameters (Å <sup>2</sup> ) for non-H atoms |
|           | with e.s.d.'s in parentheses                         |

|       | x        | У          | z         | $B_{eq}^*$ |
|-------|----------|------------|-----------|------------|
| C(1)  | 7975 (3) | 311 (6)    | 13027 (2) | 5.89 (9)   |
| C(2)  | 9295 (3) | 2268 (5)   | 12427 (2) | 5.66 (9)   |
| C(3)  | 8109 (3) | 1413†      | 12246 (2) | 4.20 (7)   |
| O(4)  | 7161 (2) | 2572 (3)   | 12148 (1) | 5.17 (5)   |
| C(5)  | 6966 (3) | 3554 (4)   | 11335 (2) | 5.16 (8)   |
| C(6)  | 6774 (3) | 2389 (4)   | 10526 (2) | 4.24 (7)   |
| C(7)  | 7836 (3) | 1264 (4)   | 10612 (2) | 3.66 (6)   |
| O(8)  | 7947 (2) | 371 (3)    | 11456 (1) | 3.90 (4)   |
| O(9)  | 6657 (2) | 3375 (3)   | 9717 (1)  | 4.46 (5)   |
| C(10) | 6433 (3) | 2375 (4)   | 8916 (2)  | 4.32 (7)   |
| C(11) | 7370 (2) | 1072 (4)   | 8927 (2)  | 3.81 (6)   |
| C(12) | 7624 (2) | 70 (4)     | 9817 (2)  | 3.60 (6)   |
| O(13) | 5334 (2) | 1588 (3)   | 8793 (2)  | 5.11 (6)   |
| C(14) | 4388 (3) | 2734 (6)   | 8603 (3)  | 7.6 (1)    |
| O(15) | 8402 (2) | 1954 (3)   | 8827 (1)  | 4.38 (5)   |
| C(16) | 9036 (3) | 1246 (5)   | 8221 (2)  | 4.64 (7)   |
| C(17) | 9649 (3) | 2626 (5)   | 7827 (2)  | 5-58 (9)   |
| O(18) | 8800 (2) | 3667 (3)   | 7212 (2)  | 5.58 (6)   |
| C(19) | 8498 (3) | 3059 (6)   | 6326 (2)  | 5.68 (8)   |
| C(20) | 7178 (3) | 3226 (5)   | 5971 (2)  | 4-53 (7)   |
| O(21) | 6632 (2) | 1952 (3)   | 6400 (1)  | 4.41 (5)   |
| C(22) | 5435 (2) | 1791 (4)   | 6152 (2)  | 3.61 (6)   |
| C(23) | 4684 (3) | 2845 (4)   | 5611 (2)  | 4.15 (7)   |
| C(24) | 3440 (3) | 2560 (4)   | 5425 (2)  | 3.89 (6)   |
| C(25) | 2637 (3) | 3599 (5)   | 4847 (2)  | 4.88 (8)   |
| C(26) | 1450 (3) | 3308 (5)   | 4685 (2)  | 5.47 (9)   |
| C(27) | 1014 (3) | 1977 (6)   | 5094 (2)  | 5.71 (9)   |
| C(28) | 1765 (3) | 926 (5)    | 5657 (2)  | 4.93 (8)   |
| C(29) | 3008 (2) | 1174 (4)   | 5829 (2)  | 3.87 (6)   |
| C(30) | 3807 (2) | 83 (4)     | 6362 (2)  | 3.87 (6)   |
| C(31) | 4992 (2) | 332 (4)    | 6505 (2)  | 3.66 (6)   |
| O(32) | 5847 (2) | - 697 (3)  | 6956 (1)  | 4.14 (5)   |
| C(33) | 5478 (3) | - 2331 (4) | 7145 (2)  | 4:92 (8)   |
| C(34) | 6574 (3) | - 3262 (4) | 7556 (2)  | 4.67 (7)   |
| O(35) | 6953 (2) | - 2746 (3) | 8475 (1)  | 4.44 (5)   |
| C(36) | 8103 (3) | - 3337 (4) | 8884 (2)  | 4.50 (7)   |
| C(37) | 8464 (3) | - 2665 (4) | 9837 (2)  | 4.83 (8)   |
| O(38) | 8649 (2) | - 924 (3)  | 9861 (1)  | 4.18 (5)   |

\*  $B_{eq} = (4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos\gamma)B(1,2) + ac(\cos\beta) \times b^2B(1,2) + b^2B(2,2) + b^2B(2,2) + b^2B(2,3) +$  $B(1,3) + bc(\cos\alpha)B(2,3)$ ].

† Origin-defining.

ates, Inc., 1985). Weights of each reflection in refinement (on F) calculated from  $w = 1/\sigma^2(F_o)$ ,  $\sigma(F_o)$  being the e.s.d., based on counting statistics, of the observed structure factor. Scattering factors taken from International Tables for X-ray Crystallography (1974). All H atoms included in the refinement in calculated positions [d(C-H) = 1.08 Å]. The total number of parameters refined was 342: one scale factor, position parameters and anisotropic thermal parameters for non-H atoms; no attempt was made to refine the positions or isotropic thermal parameters for H atoms. Refinement resulted in final values of R = 0.035, wR = 0.034 and S = 2.86; in the last cycle  $(\Delta/\sigma)_{\rm max} = 0.03$ . Final max. and min.  $\Delta\rho$  were 0.24 and  $-0.13 \text{ e} \text{ Å}^{-3}$ , respectively. All calculations performed on a MicroPDP11/73 computer. The final atomic coordinates are given in Table 1.\*

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters for the non-H atoms, positional and isotropic thermal parameters for the H atoms and a table of the shortest non-bonded contacts have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52450 (29 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

1.422 (4) C(1)-C(3) C(2)-C(3) 1.508 (5) O(13)-C(14) O(15)-C(16) C(16)-C(17) C(17)-O(18) 1.408 (4) 1.513 (4) 1.431 (4) 1.514 (5) C(3)-O(4) 1.434 (3) 1.465 (4) C(3)-O(8) 1.388 (4) O(4)--C(5) 1.432 (4) O(18)-C(19) 1.516 (5) C(19)-C(20) C(5)-C(6) 1.516 (4) C(20)-O(21) 1.436 (4) C(6)--C(7) 1.517(4)C(6)---O(9) 1.434 (4) O(21)-C(22) 1.366 (3) C(22)--C(31) C(31)--O(32) 1.436 (4) C(7)-O(8) 1.439 (3) 1-361 (3) C(7)-C(12) 1.514 (5) 1 442 (4) 1.425 (4) O(32)-C(33) O(9)-C(10) 1.515 (4) C(33)-C(34) 1.494 (4) C(10)-C(11) C(10)-O(13) 1.403 (4) C(34)-O(35) 1.415 (3) C(11)--C(12) 1.537 (5) O(35)-C(36) 1.427 (3) C(11)-O(15) 1.432 (4) C(36)-C(37) 1.502(4)C(12)-O(38) 1.427 (3) C(37)-O(38) 1.430 (4) 115.6 (2) C(10)-O(13)-C(14) 111.6 (3) C(3)---O(4)---C(5) 107.5 (3) C(11)-O(15)-C(16) 115.3 (2) O(4)-C(5)-C(6) O(15)-C(16)-C(17) C(16)-C(17)-O(18) 107.6 (3) C(5)-C(6)-C(7) 109.3 (2) 107.4 (3) 111.3 (2) C(5)-C(6)-O(9) C(7)-C(6)-O(9) 109.7 (2) C(17)-O(18)--C(19) 113-2 (3) C(6)-C(7)-O(8) O(18)-C(19)-C(20) C(19)-C(20)-O(21) 109-4 (3) 106-7 (3) 107.3 (2)  $\begin{array}{c} C(6) - C(7) - C(12) \\ O(8) - C(7) - C(12) \\ C(3) - O(8) - C(7) \\ C(6) - O(9) - C(10) \end{array}$ 109.1(3)C(20) - O(21) - C(22)118.0 (2) 109.6 (2) 113.5 (2) O(21)-C(22)-C(23) 125.9 (3) O(21) - C(22) - C(31)O(21) - C(22) - C(31)C(22) - C(31) - O(32)111.1 (2) 113.7 (2) O(9)-C(10)-C(11) 112.9 (2) 114.2 (2) C(30)-C(31)-O(32) C(31)-O(32)-C(33) O(9)-C(10)-O(13) 111.5 (3) 126.2 (3) C(11)-C(10)-O(13) C(10)-C(11)-C(12) 108-2 (3) 116.6 (2) 106.6 (2) O(32)—C(33)—C(34) C(33)—C(34)—O(35) 112.5 (3) 108.0 (3) C(10)-C(11)-O(15) 105.3 (3) C(12) - C(11) - O(15)C(34)-O(35)-C(36) 112.6 (2) 110.3 (2) C(7) - C(12) - C(11)C(7) - C(12) - O(38)109.3 (3) 108.1 (3) O(35)-C(36)-C(37) 109.5 (2) C(36)-C(37)-O(38) 113.2 (3) C(11)-C(12)-O(38) 110.1 (2) C(12)-O(38)-C(37) 116-1 (2)

Table 2. Selected bond distances (Å) and angles (°) for

non-H atoms with e.s.d.'s in parentheses

Table 3. Torsion angles (°) in the macrocyclic18-membered ring with e.s.d.'s in parentheses

| SUD SUD SUS SUS               | 101.2 (2)   | 140 4 (9)    |
|-------------------------------|-------------|--------------|
| C(12) - C(11) - O(15) - C(16) | 101-2 (3)   | - 109.0 (8)  |
| C(11) - O(15) - C(16) - C(17) | 151-4 (2)   | - 178-4 (8)  |
| O(15)-C(16)-C(17)-O(18)       | - 69.2 (3)  | - 80.9 (6)   |
| C(16) - C(17) - O(18) - C(19) | - 84.8 (3)  | 167-8 (8)    |
| C(17) - O(18) - C(19) - C(20) | 137.0 (3)   | 171-1 (8)    |
| O(18) - C(19) - C(20) - O(21) | - 75.8 (4)  | 65·6 (6)     |
| C(19) - C(20) - O(21) - C(22) | - 176.6 (2) | - 174-9 (8)  |
| C(20) = O(21) - C(22) - C(31) | 170.6 (2)   | 166-2 (9)    |
| O(21) - C(22) - C(31) - O(32) | - 5.3 (3)   | 6.7 (6)      |
| C(22) - C(31) - O(32) - C(33) | - 166.5 (3) | 179-6 (9)    |
| C(31) - O(32) - C(33) - C(34) | 174-6 (2)   | - 171-2 (8)  |
| O(32) - C(33) - C(34) - O(35) | 76.4 (3)    | - 65.7 (6)   |
| C(33) - C(34) - O(35) - C(36) | - 169.5 (2) | - 172.7 (9)  |
| C(34) - O(35) - C(36) - C(37) | 177.0 (3)   | - 172.7 (10) |
| O(35) - C(36) - C(37) - O(38) | - 67.6 (3)  | 60.3 (7)     |
| C(36) - C(37) - O(38) - C(12) | 85-0 (3)    | 152.9 (9)    |
| C(11) - C(12) - O(38) - C(37) | -114.6(3)   | - 133-2 (8)  |
| O(15) - C(11) - C(12) - O(38) | -52.3(3)    | 54.9 (5)     |
| -(, -(, -(,                   | ( )         |              |

\* Data for the complex of (II) with KSCN (Suwińska & Lipkowski, 1988).

**Discussion.** Bond distances and angles are given in Table 2, torsion angles in the macrocylic ring are listed in Table 3. The numbering scheme is shown in Fig. 1. The bond lengths and bond angles in the aromatic naphthalene moiety are similar to those found for the naphthalene molecule at 239 K (Brock & Dunitz, 1982) [range from 1.359 (4) to 1.436 (4) Å for the bond distances and from 118.1 (3) to 122.3 (4)° for the bond angles]. The  $C(sp^3)$ —O [1.388 (4)–1.465 (4), average 1.428 Å] and  $C(sp^3)$ —C ( $sp^3$ ) [1.494 (4)–1.537 (5) average 1.513 Å] distances in the macrocyclic ring follow the trends usual for crown ether compounds (Dunitz & Seiler, 1974).

C( $sp^3$ )—C( $sp^3$ )—O angles in the macrocyclic ring vary from 106.6 (2) to 113.2 (3)° (average 109.3°); C( $sp^3$ )—O—C( $sp^3$ ) bond angles may be classified in two groups: angles at O(18) and O(35) equal to 113.2 (3) and 112.6 (2)°, respectively, and at O(15), O(21), O(32) and O(38) which are larger by about 3° [range 115.3 (2)–118.0 (2), average 116.5°]. The same tendency was observed in other macrocyclic ligands bearing chiral sugar substituents derived from glucose and mannose (Suwińska *et al.*, 1981; Suwińska



Fig. 1. ORTEPII (Johnson, 1976) view of the molecule with the atom numbering. The thermal ellipsoids are given at 50% probability.



Fig. 2. The conformation of the macrocyclic ring showing the short intramolecular contacts.

& Andreetti, 1983; Courtois et al., 1986; Suwińska & Lipkowski, 1988). The conformation of the macrocyclic ring is described by torsion angles (Table 3). The sequence of dihedral angles along the macrocylic ring is  $g^+ag^-g^-ag^-aa0aag^+aag^-g^+g^-g^-$  and is different from that for the complex of  $\alpha$ -D-mannosidobenzo-18-crown-6 (II) with KSCN (Suwińska & Lipkowski, 1988) which was much closer to the 'ideal' conformation with energetically preferred gauche (g) conformation about C-C bonds and anti (a) about C-O bonds. The gauche conformation about C(11) - O(15), C(17) - O(18), C(37) - O(38) and C(12)—O(38) bonds forces the macrocyclic ring into a highly distorted conformation, minimizing the size of the molecular cavity. The cavity, which in complexed form contains the K<sup>+</sup> cation, in the present structure contains H atoms H(11) and H(16a) which are pointing towards the center of the macrocyclic cavity, giving short intramolecular contacts 'across' the ring (Fig. 2). The O(21) and O(32) atoms are out of the plane of the naphthalene rings by -0.082(2)and +0.183 (2) Å, respectively. The four O atoms of the macrocyclic ring,  $\overline{O}(18)$ , O(21), O(32) and O(35), are coplanar to within 0.022 (2) Å; the remaining two O atoms deviate from that plane by -1.299(2) Å [O(15)] and -1.019(2) Å [O(38)].

The shortest interatomic distances between non-H atoms of adjacent different molecules are: no C···C or O···O below 3.5 Å, O···C 3.389 (4) Å between O(4) and C(30) at 1-x,  $\frac{1}{2} + y$ , 2-z.

This work was supported by Grant WPR-III/6 from The Polish Academy of Sciences. The author is grateful to Dr Marek Pietraszkiewicz for the crystals used.

#### References

- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP. Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- BROCK, C. P. & DUNITZ, J. D. (1982). Acta Cryst. B38, 2218-2228.
- COURTOIS, A., EL MASDOURI, L., GÉHIN, D. & GROSS, B. (1986). Acta Cryst. C42, 850-852.
- DUNITZ, J. D. & SEILER, P. (1974). Acta Cryst. B30, 2739-2741.
- GÉHIN, D., DI CESARE, P. & GROSS B. (1986). J. Org. Chem. 51, 1906-1908.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138 (3rd revision). Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- SUWINSKA, K. & ANDREETTI, G. D. (1983). J. Inclusion Phenom. 1, 71–78.
- SUWIŃSKA, K. & LIPKOWSKI, J. (1988). J. Inclusion Phenom. 6, 273–248.
- SUWIŃSKA, K., PIETRASZKIEWICZ, M., LIPKOWSKI, J., JURCZAK, J., ANDREETTI, G. D. & BOCELLI, G. (1981). J. Mol. Struct. 75, 121-127.

Acta Cryst. (1990). C46, 634-637

# 1-Phosphabicyclo[3.3.0]octane 1-Sulfide

## BY U. BAUMEISTER\*

Department of Crystallography, A. Mickiewicz University, ul. Grunwaldska 6, 60-780 Poznań, Poland

## AND H. HARTUNG<sup>†</sup> AND F. KRECH

Sektion Chemie, Martin-Luther-Universität Halle-Wittenberg, Postfach, Halle, DDR-4010, German Democratic Republic

(Received 7 March 1989; accepted 6 July 1989)

Abstract.  $C_7H_{13}PS$ ,  $M_r = 160\cdot 2$ , monoclinic,  $P2_1/c$ ,  $a = 7\cdot647$  (1),  $b = 7\cdot841$  (1),  $c = 14\cdot508$  (4) Å,  $\beta = 99\cdot96$  (3)°,  $V = 856\cdot8$  (3) Å<sup>3</sup>, Z = 4,  $D_x = 1\cdot24 \text{ Mg m}^{-3}$ ,  $\lambda(\text{Cu } K\alpha) = 1\cdot5418 \text{ Å}$ ,  $\mu = 4\cdot43 \text{ mm}^{-1}$ , F(000) = 344, T = 291 K, final R = 0.056

\* Permanent address: Sektion Chemie, Martin-Luther-Universität Halle-Wittenberg, Postfach, Halle, DDR-4010.

† To whom correspondence should be addressed.

for 981 observed reflections. The phospholane rings of the 1-phosphabicyclo[3.3.0]octane 1-sulfide molecule are *cis*-fused and both adopt an envelope conformation. In one ring the flap C atom is positionally disordered. As a result of this disorder, the title compound exists in both an *exo-endo* conformation (main occupancy) and an *endo-endo* conformation in the solid state.

0108-2701/90/040634-04\$03.00

© 1990 International Union of Crystallography